Long-Term Supported Versions

    Application Scenarios

    You can use functions provided by A-Tune through the CLI client atune-adm. This chapter describes the functions and usage of the A-Tune client.

    Overview

    • Run A-Tune as the root user.

    • You can run the atune-adm help/--help/-h command to query commands supported by atune-adm.

    • All example commands are used in single-node mode. For distributed mode, specify an IP address and port number. For example:

      #  atune-adm -a 192.168.3.196 -p 60001 list
      
    • The define, update, undefine, collection, train, and upgrade commands do not support remote execution.

    • In the command format, brackets ([]) indicate that the parameter is optional, and angle brackets (<>) indicate that the parameter is mandatory. The actual parameters prevail.

    Querying Workload Types

    list

    Function

    Query the supported profiles and the values of Active.

    Format

    atune-adm list

    Example

    # atune-adm list
    
    Support profiles:
    +------------------------------------------------+-----------+
    | ProfileName                                    | Active    |
    +================================================+===========+
    | arm-native-android-container-robox             | false     |
    +------------------------------------------------+-----------+
    | basic-test-suite-euleros-baseline-fio          | false     |
    +------------------------------------------------+-----------+
    | basic-test-suite-euleros-baseline-lmbench      | false     |
    +------------------------------------------------+-----------+
    | basic-test-suite-euleros-baseline-netperf      | false     |
    +------------------------------------------------+-----------+
    | basic-test-suite-euleros-baseline-stream       | false     |
    +------------------------------------------------+-----------+
    | basic-test-suite-euleros-baseline-unixbench    | false     |
    +------------------------------------------------+-----------+
    | basic-test-suite-speccpu-speccpu2006           | false     |
    +------------------------------------------------+-----------+
    | basic-test-suite-specjbb-specjbb2015           | false     |
    +------------------------------------------------+-----------+
    | big-data-hadoop-hdfs-dfsio-hdd                 | false     |
    +------------------------------------------------+-----------+
    | big-data-hadoop-hdfs-dfsio-ssd                 | false     |
    +------------------------------------------------+-----------+
    | big-data-hadoop-spark-bayesian                 | false     |
    +------------------------------------------------+-----------+
    | big-data-hadoop-spark-kmeans                   | false     |
    +------------------------------------------------+-----------+
    | big-data-hadoop-spark-sql1                     | false     |
    +------------------------------------------------+-----------+
    | big-data-hadoop-spark-sql10                    | false     |
    +------------------------------------------------+-----------+
    | big-data-hadoop-spark-sql2                     | false     |
    +------------------------------------------------+-----------+
    | big-data-hadoop-spark-sql3                     | false     |
    +------------------------------------------------+-----------+
    | big-data-hadoop-spark-sql4                     | false     |
    +------------------------------------------------+-----------+
    | big-data-hadoop-spark-sql5                     | false     |
    +------------------------------------------------+-----------+
    | big-data-hadoop-spark-sql6                     | false     |
    +------------------------------------------------+-----------+
    | big-data-hadoop-spark-sql7                     | false     |
    +------------------------------------------------+-----------+
    | big-data-hadoop-spark-sql8                     | false     |
    +------------------------------------------------+-----------+
    | big-data-hadoop-spark-sql9                     | false     |
    +------------------------------------------------+-----------+
    | big-data-hadoop-spark-tersort                  | false     |
    +------------------------------------------------+-----------+
    | big-data-hadoop-spark-wordcount                | false     |
    +------------------------------------------------+-----------+
    | cloud-compute-kvm-host                         | false     |
    +------------------------------------------------+-----------+
    | database-mariadb-2p-tpcc-c3                    | false     |
    +------------------------------------------------+-----------+
    | database-mariadb-4p-tpcc-c3                    | false     |
    +------------------------------------------------+-----------+
    | database-mongodb-2p-sysbench                   | false     |
    +------------------------------------------------+-----------+
    | database-mysql-2p-sysbench-hdd                 | false     |
    +------------------------------------------------+-----------+
    | database-mysql-2p-sysbench-ssd                 | false     |
    +------------------------------------------------+-----------+
    | database-postgresql-2p-sysbench-hdd            | false     |
    +------------------------------------------------+-----------+
    | database-postgresql-2p-sysbench-ssd            | false     |
    +------------------------------------------------+-----------+
    | default-default                                | false     |
    +------------------------------------------------+-----------+
    | docker-mariadb-2p-tpcc-c3                      | false     |
    +------------------------------------------------+-----------+
    | docker-mariadb-4p-tpcc-c3                      | false     |
    +------------------------------------------------+-----------+
    | hpc-gatk4-human-genome                         | false     |
    +------------------------------------------------+-----------+
    | in-memory-database-redis-redis-benchmark       | false     |
    +------------------------------------------------+-----------+
    | middleware-dubbo-dubbo-benchmark               | false     |
    +------------------------------------------------+-----------+
    | storage-ceph-vdbench-hdd                       | false     |
    +------------------------------------------------+-----------+
    | storage-ceph-vdbench-ssd                       | false     |
    +------------------------------------------------+-----------+
    | virtualization-consumer-cloud-olc              | false     |
    +------------------------------------------------+-----------+
    | virtualization-mariadb-2p-tpcc-c3              | false     |
    +------------------------------------------------+-----------+
    | virtualization-mariadb-4p-tpcc-c3              | false     |
    +------------------------------------------------+-----------+
    | web-apache-traffic-server-spirent-pingpo       | false     |
    +------------------------------------------------+-----------+
    | web-nginx-http-long-connection                 | true      |
    +------------------------------------------------+-----------+
    | web-nginx-https-short-connection               | false     |
    +------------------------------------------------+-----------+
    

    NOTE:
    If the value of Active is true, the profile is activated. In the example, the web-nginx-http-long-connection profile is activated.

    Workload Type Analysis and Auto Tuning

    analysis

    Function

    Collect real-time statistics from the system to identify and automatically tune workload types.

    Format

    atune-adm analysis [OPTIONS]

    Parameter Description

    • OPTIONS

      Parameter

      Description

      --model, -m

      Indicate a new model generated by user self-training

      --characterization, -c

      Use the default model for application identification without performing automatic tuning

    Example

    • Use the default model to identify applications.

      # atune-adm analysis --characterization
      
    • Use the default model to identify applications and perform automatic tuning.

      # atune-adm analysis
      
    • Use the user-defined training model to identify applications.

      # atune-adm analysis --model /usr/libexec/atuned/analysis/models/new-model.m
      

    User-defined Model

    A-Tune allows users to define and learn new models. To define a new model, perform the following steps:

    1. Run the define command to define a new profile.
    2. Run the collection command to collect the system data corresponding to the application.
    3. Run the train command to train the model.

    define

    Function

    Add a user-defined application scenario and the corresponding profile tuning items.

    Format

    atune-adm define <service_type> <application_name> <scenario_name> <profile_path>

    Example

    Add a profile whose service_type is test_service, application_name is test_app, scenario_name is test_scenario, and the tuning item configuration file is example.conf.

    # atune-adm define test_service test_app test_scenario ./example.conf
    

    The example.conf file can be written as follows (the following tuning items are optional and are for reference only). You can also run the atune-adm info command to view how the existing profile is written.

     [main]
     # list its parent profile
     [kernel_config]
     # to change the kernel config
     [bios]
     # to change the bios config
     [bootloader.grub2]
     # to change the grub2 config
     [sysfs]
     # to change the /sys/* config
     [systemctl]
     # to change the system service status
     [sysctl]
     # to change the /proc/sys/* config
     [script]
     # the script extension of cpi
     [ulimit]
     # to change the resources limit of user
     [schedule_policy]
     # to change the schedule policy
     [check]
     # check the environment
     [tip]
     # the recommended optimization, which should be performed manually
    

    collection

    Function

    Collect the global resource usage and OS status during service running and save the collected information to a CSV output file as the input dataset for model training.

    NOTE:

    • This command depends on the sampling tools such as perf, mpstat, vmstat, iostat, and sar.
    • Currently, only the Kunpeng 920 processor is supported. You can run the dmidecode -t processor command to check the CPU model.

    Format

    atune-adm collection <OPTIONS>

    Parameter Description

    • OPTIONS

      Parameter

      Description

      --filename, -f

      Name of the generated CSV file used for training: name-timestamp.csv

      --output_path, -o

      Path for storing the generated CSV file. The absolute path is required.

      --disk, -b

      Disk used during service running, for example, /dev/sda.

      --network, -n

      Network port used during service running, for example, eth0.

      --app_type, -t

      Mark the application type of the service as a label for training.

      --duration, -d

      Data collection time during service running, in seconds. The default collection time is 1200 seconds.

      --interval, -i

      Interval for collecting data, in seconds. The default interval is 5 seconds.

    Example

    # atune-adm collection --filename name --interval 5 --duration 1200 --output_path /home/data --disk sda --network eth0 --app_type test_type 
    

    train

    Function

    Use the collected data to train the model. Collect data of at least two application types during training. Otherwise, an error is reported.

    Format

    atune-adm train <OPTIONS>

    Parameter Description

    • OPTIONS
      ParameterDescription
      --data_path, -dPath for storing CSV files required for model training
      --output_file, -oA new model generated during training

    Example

    Use the CSV file in the data directory as the training input. The generated model new-model.m is stored in the model directory.

    # atune-adm train --data_path /home/data --output_file /usr/libexec/atuned/analysis/models/new-model.m 
    

    undefine

    Function

    Delete a user-defined profile.

    Format

    atune-adm undefine <profile>

    Example

    Delete the user-defined profile.

    # atune-adm undefine test_service-test_app-test_scenario
    

    Querying Profiles

    info

    Function

    View the profile content.

    Format

    atune-adm info <profile>

    Example

    View the profile content of web-nginx-http-long-connection.

    # atune-adm info web-nginx-http-long-connection
    
    *** web-nginx-http-long-connection:
    
    #
    # nginx http long connection A-Tune configuration
    #
    [main]
    include = default-default
    
    [kernel_config]
    #TODO CONFIG
    
    [bios]
    #TODO CONFIG
    
    [bootloader.grub2]
    iommu.passthrough = 1
    
    [sysfs]
    #TODO CONFIG
    
    [systemctl]
    sysmonitor = stop
    irqbalance = stop
    
    [sysctl]
    fs.file-max = 6553600
    fs.suid_dumpable = 1
    fs.aio-max-nr = 1048576
    kernel.shmmax = 68719476736
    kernel.shmall = 4294967296
    kernel.shmmni = 4096
    kernel.sem = 250 32000 100 128
    net.ipv4.tcp_tw_reuse = 1
    net.ipv4.tcp_syncookies = 1
    net.ipv4.ip_local_port_range = 1024     65500
    net.ipv4.tcp_max_tw_buckets = 5000
    net.core.somaxconn = 65535
    net.core.netdev_max_backlog = 262144
    net.ipv4.tcp_max_orphans = 262144
    net.ipv4.tcp_max_syn_backlog = 262144
    net.ipv4.tcp_timestamps = 0
    net.ipv4.tcp_synack_retries = 1
    net.ipv4.tcp_syn_retries = 1
    net.ipv4.tcp_fin_timeout = 1
    net.ipv4.tcp_keepalive_time = 60
    net.ipv4.tcp_mem =  362619      483495   725238
    net.ipv4.tcp_rmem = 4096         87380   6291456
    net.ipv4.tcp_wmem = 4096         16384   4194304
    net.core.wmem_default = 8388608
    net.core.rmem_default = 8388608
    net.core.rmem_max = 16777216
    net.core.wmem_max = 16777216
    
    [script]
    prefetch = off
    ethtool =  -X {network} hfunc toeplitz
    
    [ulimit]
    {user}.hard.nofile = 102400
    {user}.soft.nofile = 102400
    
    [schedule_policy]
    #TODO CONFIG
    
    [check]
    #TODO CONFIG
    
    [tip]
    SELinux provides extra control and security features to linux kernel. Disabling SELinux will improve the performance but may cause security risks. = kernel
    disable the nginx log = application
    

    Updating Profiles

    You can update the existing profiles as required.

    update

    Function

    Update the original tuning items in the existing profiles to the content in the new.conf file.

    Format

    atune-adm update <profile> <profile_path>

    Example

    Change the tuning item of the profile named test_service-test_app-test_scenario to new.conf.

    # atune-adm update test_service-test_app-test_scenario ./new.conf
    

    Activating Profiles

    profile

    Function

    Manually activate a profile to make it in the active state.

    Format

    atune-adm profile <profile>

    Parameter Description

    For details about the profile name, see the query result of the list command.

    Example

    Activate the profile corresponding to web-nginx-http-long-connection.

    # atune-adm profile web-nginx-http-long-connection
    

    Rolling Back Profiles

    rollback

    Functions

    Roll back the current configuration to the initial configuration of the system.

    Format

    atune-adm rollback

    Example

    # atune-adm rollback
    

    Updating Database

    upgrade

    Function

    Update the system database.

    Format

    atune-adm upgrade <DB_FILE>

    Parameter Description

    • DB_FILE

      New database file path.

    Example

    Update the dataset to new_sqlite.db.

    # atune-adm upgrade ./new_sqlite.db
    

    Querying System Information

    check

    Function

    Check the CPU, BIOS, OS, and NIC information.

    Format

    atune-adm check

    Example

    # atune-adm check
     cpu information:
         cpu:0   version: Kunpeng 920-6426  speed: 2600000000 HZ   cores: 64
         cpu:1   version: Kunpeng 920-6426  speed: 2600000000 HZ   cores: 64
     system information:
         DMIBIOSVersion: 0.59
         OSRelease: 4.19.36-vhulk1906.3.0.h356.eulerosv2r8.aarch64
     network information:
         name: eth0              product: HNS GE/10GE/25GE RDMA Network Controller
         name: eth1              product: HNS GE/10GE/25GE Network Controller
         name: eth2              product: HNS GE/10GE/25GE RDMA Network Controller
         name: eth3              product: HNS GE/10GE/25GE Network Controller
         name: eth4              product: HNS GE/10GE/25GE RDMA Network Controller
         name: eth5              product: HNS GE/10GE/25GE Network Controller
         name: eth6              product: HNS GE/10GE/25GE RDMA Network Controller
         name: eth7              product: HNS GE/10GE/25GE Network Controller
         name: docker0           product:
    

    Performing Automatic Parameter Tuning

    A-Tune provides the automatic search capability with the optimal configuration, saving the trouble of manually configuring parameters and performance evaluation. This greatly improves the search efficiency of optimal configurations.

    tuning

    Function

    Use the specified project file to search the dynamic space for parameters and find the optimal solution under the current environment configuration.

    Format

    atune-adm tuning [OPTIONS] <PROJECT_YAML>

    NOTE:
    Before running the command, ensure that the following conditions are met:

    1. The YAML configuration file on the server has been edited and stored in the /etc/atuned/tuning/ directory of the atuned service.
    2. The YAML configuration file on the client has been edited and stored on the atuned client.

    Parameter Description

    • OPTIONS

      Parameter

      Description

      --restore, -r

      Restores the initial configuration before tuning.

      --project, -p

      Specifies the project name in the YAML file to be restored.

      --restart, -c

      Performs tuning based on historical tuning results.

      --detail, -d

      Prints detailed information about the tuning process.

      NOTE:
      If this parameter is used, the -p parameter must be followed by a specific project name and the YAML file of the project must be specified.

      • PROJECT_YAML: YAML configuration file of the client.

      Configuration Description

      Table 1 YAML file on the server

      Name

      Description

      Type

      Value Range

      project

      Project name.

      Character string

      -

      startworkload

      Script for starting the service to be optimized.

      Character string

      -

      stopworkload

      Script for stopping the service to be optimized.

      Character string

      -

      maxiterations

      Maximum number of optimization iterations, which is used to limit the number of iterations on the client. Generally, the more optimization iterations, the better the optimization effect, but the longer the time required. Set this parameter based on the site requirements.

      Integer

      >10

      object

      Parameters to be optimized and related information.

      For details about the object configuration items, see Table 2.

      -

      -

      Table 2 Description of object configuration items

      Name

      Description

      Type

      Value Range

      name

      Parameter to be optimized.

      Character string

      -

      desc

      Description of parameters to be optimized.

      Character string

      -

      get

      Script for querying parameter values.

      -

      -

      set

      Script for setting parameter values.

      -

      -

      needrestart

      Specifies whether to restart the service for the parameter to take effect.

      Enumeration

      true or false

      type

      Parameter type. Currently, the discrete and continuous types are supported.

      Enumeration

      discrete or continuous

      dtype

      This parameter is available only when type is set to discrete. Currently, int, float and string are supported.

      Enumeration

      int, float, string

      scope

      Parameter setting range. This parameter is valid only when type is set to discrete and dtype is set to int or float, or type is set to continuous.

      Integer/Float

      The value is user-defined and must be within the valid range of this parameter.

      step

      Parameter value step, which is used when dtype is set to int or float.

      Integer/Float

      This value is user-defined.

      items

      Enumerated value of which the parameter value is not within the scope. This is used when dtype is set to int or float.

      Integer/Float

      The value is user-defined and must be within the valid range of this parameter.

      options

      Enumerated value range of the parameter value, which is used when dtype is set to string.

      Character string

      The value is user-defined and must be within the valid range of this parameter.

      Table 3 Description of configuration items of a YAML file on the client

      Name

      Description

      Type

      Value Range

      project

      Project name, which must be the same as that in the configuration file on the server.

      Character string

      -

      engine

      Tuning algorithm.

      Character string

      "random", "forest", "gbrt", "bayes", "extraTrees"

      iterations

      Number of tuning iterations.

      Integer

      ≥ 10

      random_starts

      Number of random iterations.

      Integer

      < iterations

      feature_filter_engine

      Parameter search algorithm, which is used to select important parameters. This parameter is optional.

      Character string

      "lhs"

      feature_filter_cycle

      Parameter search cycles, which is used to select important parameters. This parameter is used together with feature_filter_engine.

      Integer

      -

      feature_filter_iters

      Number of iterations for each cycle of parameter search, which is used to select important parameters. This parameter is used together with feature_filter_engine.

      Integer

      -

      split_count

      Number of evenly selected parameters in the value range of tuning parameters, which is used to select important parameters. This parameter is used together with feature_filter_engine.

      Integer

      -

      benchmark

      Performance test script.

      -

      -

      evaluations

      Performance test evaluation index.

      For details about the evaluations configuration items, see Table 4.

      -

      -

      Table 4 Description of evaluations configuration item

      Name

      Description

      Type

      Value Range

      name

      Evaluation index name.

      Character string

      -

      get

      Script for obtaining performance evaluation results.

      -

      -

      type

      A positive or negative type of the evaluation result. The value positive indicates that the performance value is minimized, and the value negative indicates that the performance value is maximized.

      Enumeration

      positive or negative

      weight

      Weight of the index. The value ranges from 0 to 100.

      Integer

      0-100

      threshold

      Minimum performance requirement of the index.

      Integer

      User-defined

      Example

      The following is an example of the YAML file configuration on a server:

      project: "compress"
      maxiterations: 500
      startworkload: ""
      stopworkload: ""
      object :
        -
          name : "compressLevel"
          info :
              desc : "The compresslevel parameter is an integer from 1 to 9 controlling the level of compression"
              get : "cat /root/A-Tune/examples/tuning/compress/compress.py | grep 'compressLevel=' | awk -F '=' '{print $2}'"
              set : "sed -i 's/compressLevel=\\s*[0-9]*/compressLevel=$value/g' /root/A-Tune/examples/tuning/compress/compress.py"
              needrestart : "false"
              type : "continuous"
              scope :
                - 1
                - 9
              dtype : "int"
        -
          name : "compressMethod"
          info :
              desc : "The compressMethod parameter is a string controlling the compression method"
              get : "cat /root/A-Tune/examples/tuning/compress/compress.py | grep 'compressMethod=' | awk -F '=' '{print $2}' | sed 's/\"//g'"
              set : "sed -i 's/compressMethod=\\s*[0-9,a-z,\"]*/compressMethod=\"$value\"/g' /root/A-Tune/examples/tuning/compress/compress.py"
              needrestart : "false"
              type : "discrete"
              options :
                - "bz2"
                - "zlib"
                - "gzip"
              dtype : "string"
      

        

      The following is an example of the YAML file configuration on a client:

      project: "compress"
      engine : "gbrt"
      iterations : 20
      random_starts : 10
      
      benchmark : "python3 /root/A-Tune/examples/tuning/compress/compress.py"
      evaluations :
        -
          name: "time"
          info:
              get: "echo '$out' | grep 'time' | awk '{print $3}'"
              type: "positive"
              weight: 20
        -
          name: "compress_ratio"
          info:
              get: "echo '$out' | grep 'compress_ratio' | awk '{print $3}'"
              type: "negative"
              weight: 80
      

        

      Example

      • Perform tuning.

        # atune-adm tuning --project compress --detail compress_client.yaml
        
      • Restore the initial configuration before tuning. The compress is the project name in the YAML file.

        # atune-adm tuning --restore --project compress
        

    Bug Catching

    Buggy Content

    Bug Description

    Submit As Issue

    It's a little complicated....

    I'd like to ask someone.

    PR

    Just a small problem.

    I can fix it online!

    Bug Type
    Specifications and Common Mistakes

    ● Misspellings or punctuation mistakes;

    ● Incorrect links, empty cells, or wrong formats;

    ● Chinese characters in English context;

    ● Minor inconsistencies between the UI and descriptions;

    ● Low writing fluency that does not affect understanding;

    ● Incorrect version numbers, including software package names and version numbers on the UI.

    Usability

    ● Incorrect or missing key steps;

    ● Missing prerequisites or precautions;

    ● Ambiguous figures, tables, or texts;

    ● Unclear logic, such as missing classifications, items, and steps.

    Correctness

    ● Technical principles, function descriptions, or specifications inconsistent with those of the software;

    ● Incorrect schematic or architecture diagrams;

    ● Incorrect commands or command parameters;

    ● Incorrect code;

    ● Commands inconsistent with the functions;

    ● Wrong screenshots.

    Risk Warnings

    ● Lack of risk warnings for operations that may damage the system or important data.

    Content Compliance

    ● Contents that may violate applicable laws and regulations or geo-cultural context-sensitive words and expressions;

    ● Copyright infringement.

    How satisfied are you with this document

    Not satisfied at all
    Very satisfied
    Submit
    Click to create an issue. An issue template will be automatically generated based on your feedback.
    Bug Catching
    编组 3备份